
CS 1803 Individual Homework 5 – Factory
Out of 100 points

Files to submit: 1. HW5.py

This is an INDIVIDUAL Assignment:
Collaboration at a reasonable level will not result in substantially similar code. Students
may only collaborate with fellow students currently taking CS 1803, the TA's and the
lecturer. Collaboration means talking through problems, assisting with debugging,
explaning a concept, etc. You should not exchange code or write code for others.

For Help:
- TA Helpdesk – Schedule posted on class website.
- Email TA's or use T-Square Forums

Notes:
• Don’t forget to include the required comments and collaboration

statement (as outlined on the course syllabus).
• Do not wait until the last minute to do this assignment in case you run into

problems.
• Read the entire specifications document before starting this assignment.

Introduction
In this assignment, you will be tasked with reading data from files in CSV format. You
will have to find the maximum of various rows and columns of numerical data and
display that information on a GUI. Your GUI will also allow the user to select the file
from which you should read data.

Your ENTIRE program must be built as a single Python class. Name the class HW5. At
the very end of your code file, you will start the TK windowing system and instantiate
your object. That may look something like this:
rootWin = Tk()
app = HW5(rootWin)
rootWin.mainloop()

Although you are free to organize your class in any way you would like, we strongly
recommend that you break your code up into several manageable methods as outlined
below. If you choose not to follow this suggested program organization, please place a
comment in your code that uses the following names to illustrate where the similar
functionality exists in your code:

The recommended breakdown of functionality within your class is the following
methods:

1. __init__()
2. clicked()
3. readData(fileName)
4. convertData()
5. findSlowDay()
6. findBusyStation()

File Format Information

For this assignment, you will be given two comma separated value (CSV) files. These
files will have different numbers of rows/columns, but the format will generally be the
same. Each row starts with a day or date, and each column starts with the name of a
station in the factory. The other values in the table are numbers representing what
fraction of the day each station was used. See the factory1.csv and factory2.csv files for
examples.

Your program must work with and produce the correct answers for any similarly
formatted data file, regardless of size. You are allowed to use the csv module to read this
data, or you may write your own function to read the data.

Here is what we recommend for each of your object
methods:

__init__()

This method will be called automatically when your object is instantiated. It is
responsible for setting up your GUI. It should create labels and text Entry widgets, along
with a button to produce a GUI that looks like the following:

Note that the labels and text entry widgets are carefully arranged. The window is titled.
The labels are right (“East”) justified. The "Select File" button is close to the filename
entry but has some padding space in between. The filename display text entry widget
starts out with "..." in it, and is wide enough to show plenty of the file path (its width is
60). We suggest you use a grid layout to achieve this effect, although if you are able to
do so by using multiple frames and the "pack" layout manager you may use that instead.

Note that all of the text entry widgets are set to "readonly" at this point.

The "Select File" button should trigger (call) the clicked() method.

clicked()

When the user clicks the "Select File" button, it executes the clicked() method. This
method will present the user with a file open dialog box. If the user clicks "cancel" your
program must gracefully wait for the user to again click the "Select a File" button. If the
user actually selects a file and clicks "OK", the clicked method will do a lot more work.

Specifically, it must cause the CSV data to be read in and stored, the textual
representation of numbers converted to floats, the sum of rows and the average of
columns calculated, and the appropriate data displayed to the screen. It will use the
readData, convertData, findSlowDay and findBusyStation functions to do most of the
heavy lifting for it.

Here is an example of the data filled in on the GUI after reading the factory1.csv file:

After loading one file, the user must be able to select the "Select File" button and load in
any other file. The GUI must update itself appropriately. Here is an example of the GUI
after reading in the factory2.csv file:

Note that to change an Entry widget that has been set to "readonly", you must first set the
status to NORMAL, cut the existing text out, insert new text, and then return the status to
"readonly". (You may want to create an additional method to take care of this.) We use
Entry widgets so that the user can copy and paste the data out of our program.

readData(fileName)

This function will read in CSV data from the file name passed in. You may assume that
the user will only select "valid" CSV files, and do not have to do error checking. You
may use the CSV module if you would like. We suggest that you use an attribute such as
self.CSVData = [] to store your data. This will allow all methods to access the
data via the "self" reference.

convertData()

This method will go through the self.CSVData variable, and convert all of the numbers
from string representations to floats. This will allow you to do math on the numbers in
the CSV files. You can either create a different data structure that will be used by the
findSlowDay and findBusyStation methods, or you can replace the strings with floats in-
place. Note that you cannot (and should not try to) change the column headers or the
dates in the first column to floats.

findSlowDay()

This method will find the “slowest day” by averaging all utilization (all numbers in a
particular row) for each day, and returning the day label (Entry in the first column of the
row) and average of the remaining columns for the row with the smallest average
utilization. Note that the very first row of data is a header, so you should only examine
the 2nd and subsequent rows.

findBusyStation()

This function will find the maximum utilization for each station. It finds the maximum of
all numbers in a column and finds the column with the highest maximum. It then returns
the top entry in the column (the data label, for the station) and the column’s maximum.

Grading:
You will earn points as follows for each piece of functionality that works
correctly according to the specifications.

The GUI 40
Has all labels, text entry fields, and "Select File" button 10
Properly allows the user to specify a file to load, and displays the 10
 file name when selected.
Text Entry areas are "readonly", allowing selection and copying, 10
 but not modification by the user
The data displayed is updated correctly when each file is loaded 10

Data Loading / Calculations 60

Properly loads data from the CSV file 10
Correctly converts the string representation of numbers into 10
 floats that can be used for calculations
Correctly calculates the average of each row 10
Correctly find/displays the label and average for the row with the 10
 lowest average
Correctly calculates the maximum of each column 10
Correctly finds/displays the label/maximum for the column 10
 with the largest maximum

	Here is what we recommend for each of your object methods:
	__init__()
	clicked()
	readData(fileName)
	convertData()
	findSlowDay()
	findBusyStation()

